Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles
نویسندگان
چکیده
This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel, manganese and cobalt (NMC) based and the anode is graphite based. In order to measure the surface temperature, thermal infrared (IR) camera and contact thermocouples were used. A fairly uniform temperature distribution was observed over the cell surface in case of continuous charge and discharge up to 100A and the location of the maximum temperature was observed around the center region of the cell. On the other hand, during high current micropulse up to 80A, the temperature distribution was comparatively non-uniform. The location of the maximum and average temperature were observed around the positive tab of the cell and at the center region of the cell
منابع مشابه
Numerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle
Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...
متن کاملRole of phase change materials in creating uniform surface temperature on a lithium battery cell applicable in electric vehicles
With respect to the limitations of fossil energy resources, different types of electric vehicles (EVs) are developed as suitable alternatives. Lithium-ion (Li-ion) battery cells play an extremely important role in EVs due to their unique features. But they need a thermal management system (TMS) to maintain their surface temperature uniformity and avoid them from thermal runaways. In the current...
متن کاملThermal behavior of a commercial prismatic Lithium-ion battery cell applied in electric vehicles
This paper mainly discusses the thermal behavior and performance of Lithium-ion batteries utilized in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) based on numerical simulations. In this work, the battery’s thermal behavior is investigated at different C-rates and also contour plots of phase potential for both tabs and volume-mo...
متن کاملImproved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath
Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...
متن کاملExperimental and Numerical Investigation of Air Temperature Distribution inside a Car under Solar Load Condition
In this work both experimental and numerical analysis are carried out to investigate the effect of solar radiation on the cabin air temperature of Maruti Suzuki Celerio car parked for 90 min under solar load condition. The experimental and numerical analysis encompasses on temperature increment of air at various locations ins...
متن کامل